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Slides credit: many slides are from Robin Rombach, Karsten Kreis, Ruiqi Gao, Arash Vahdat, etc. Photo credit:  Minguk Kang et al.



Text-to-Image Everywhere

GANs, Masked GIT

(GigaGAN, MUSE)

“teddy bears mixing sparkling chemicals as 

mad scientists in a steampunk style”

“A teddy bear on a skateboard in Times 

Square.”

Autoregressive models

(Image GPT, Parti)

Diffusion models

(DALL-E 2, Imagen)

A photograph of the inside of a subway train. There are raccoons 

sitting on the seats. One of them is reading a newspaper. The 

window shows the city in the background.



Text-to-Image Everywhere

Slides credit: Robin Rombach



Where/when did it start? 
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First Text-to-Image System

A Text-to-Picture Synthesis System for Augmenting Communication

Xiaojin Zhu, Andrew Goldberg, Mohamed Eldawy, Charles Dyer, and Bradley Strock. AAAI 2007

Step 1: Image Selection. 

Step 2: Layout Optimization (Minimum overlap, Centrality, Closeness) 



First Text-to-Image System

A Text-to-Picture Synthesis System for Augmenting Communication

Xiaojin Zhu, Andrew Goldberg, Mohamed Eldawy, Charles Dyer, and Bradley Strock. AAAI 2007

Therapy for people 

with communicative disorders
Math learning and reading comprehension

for young children



First Deep Learning Work

Generating Images from Captions with Attention. 

Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba, Ruslan Salakhutdinov. ICLR 2016.
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First Deep Learning Work

Generating Images from Captions with Attention. 

Elman Mansimov, Emilio Parisotto, Jimmy Lei Ba, Ruslan Salakhutdinov. ICLR 2016.

VAES + RNN+ cross-attention



Text-Image Cross-Attention
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Slides from [Kumari et al., CVPR 2023]



How could we improve it?

11



How could we improve it?
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• Better generative modeling techniques.

• Better text encoders.

• Better generator architectures.

• Better ways to connect text and image.

• Bigger data + more GPU/TPU computing. 

• Bigger model sizes. 



GANs-based Text-to-Image

Generative Adversarial Text to Image Synthesis

Scott Reed et al., ICML 2016
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GANs-based Text-to-Image

Generative Adversarial Text to Image Synthesis

Scott Reed et al., ICML 2016

Conditional GAN + CNN + concatenation



How to increase resolution? 
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+Two-stage Models

StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

Han Zhang et al., ICCV 2017

Two-stage Conditional GAN + CNN + concatenation
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+Two-stage Models
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+ Cross-attention to connect Text and Image

AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

Tao Xu et al., CVPR 2018



+ Cross-attention to connect Text and Image

AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks

Tao Xu et al., CVPR 2018



Got Stuck in 2018-2020

(Birds, MS COCO)
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Who shall we blame?
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• Better generative modeling techniques: VAEs, GANs?

• Better text encoders: LSTM/RNN?

• Better generator architectures: CNNs?

• Better ways to connect text and image.

• Bigger data + more GPU/TPU computing. 

• Bigger model sizes. 



How could we synthesize images

beyond single or a few categories
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[PixelRNN, PixelCNN, van der Oord et al. 2016] 

Input partial 

image

“white”

Autoregressive (AR) image synthesis

Predicted color of 

next pixel



Input partial 

image

Predicted color of 

next pixel

“white”

…

[PixelRNN, PixelCNN, van der Oord et al. 2016] 
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CNN 
Encoder 

CNN 
Decoder 

1 42 3 3

94 60 22 57

33 4 18 21

1 53 94 15

quantization

input reconstruction 

0

1

N-2

N-1

Codebook

learned

learned

learned

From VQ-VAE¹ to VQGAN
¹: Neural Discrete Representation Learning, v.d.Oord et al, https://arxiv.org/abs/1711.00937

ii) add (patch-wise) Discriminator to favor realism over perfect reconstruction

CNN 

Discriminator

f r f r

f f r f

r f r f

f r r r

real/fake

learned

i) replace L2/L1 rec. loss with Perceptual loss (includes pixel-level)

Slide credit: Robin Rombach 

https://arxiv.org/abs/1711.00937
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https://arxiv.org/abs/1711.00937


CNN 
Encoder 

CNN 
Decoder 

1 42 3 3

94 60 22 57

33 4 18 21

1 53 94 15

reconstruction fixed fixed

Transformer Training

CNN 

Discriminator

f r f r

f f r f

r f r f

f r r r

real/fake

fixed
1 42 3 3 94 60 22 ?

Transformer
optional: 

prepend conditioning

“a dog”

input 

Slide credit: Robin Rombach 



Slide credit: Robin Rombach 



Scaling VQGAN for Text-to-Image!

- see recently released “Parti” paper by Google (text-to-image model)
- https://parti.research.google/
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A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass in front of the Sydney Opera 
House holding a sign on the chest that says Welcome Friends!

Slide credit: Robin Rombach 

https://parti.research.google/


- see recently released “Parti” paper by Google (text-to-image model)
- https://parti.research.google/
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Transformer-based Encoder/Decoder + Transformer-based Autoregressive models

Scaling VQGAN for Text-to-Image!

https://parti.research.google/


Another Approach: Diffusion Models! 
great results for image synthesis

Diffusion Models beat GANs on Image Synthesis 
Prafulla Dhariwal, Alex Nichol 

https://arxiv.org/abs/2105.05233

Image Super-Resolution via Iterative Refinement

Chitwan Saharia, et al

https://arxiv.org/abs/2104.07636
Denoising Diffusion Probabilistic Models

Jonathan Ho, Ajay Jain, et al

https://arxiv.org/abs/2006.11239

… but very expensive :(

Slide credit: Robin Rombach 

https://arxiv.org/abs/2105.05233
https://arxiv.org/abs/2104.07636
https://arxiv.org/abs/2006.11239


Brief Overview of Diffusion Models  

- “destroy” the data by gradually adding 

small amounts of gaussian noise

- “create” data by gradually denoising a 

noisy code from a stationary distribution

Animations from https://yang-song.github.io/blog/2021/score/

https://yang-song.github.io/blog/2021/score/


Reverse diffusion process (learned generative model)

*slides motivated from https://cvpr2022-tutorial-diffusion-models.github.io

Forward diffusion process (fixed)

Diffusion model inference



Diffusion model training

UNet

A basket of flowers

L2

Noise

Training image

Pretraining set

e.g., LAION

*slides credit: from custom-diffusion



Latent Diffusion Modeling: Architecture

Autoencoder with KL or VQ regularization.
VQ-reg.:

KL-reg.:

Slide credit: Robin Rombach 



Diffusion Model U-Net

Diffusion Model Architecture

ResNet

𝜖𝑡𝑥𝑡

photo
of

a
moon
gate

Text

transformer

Attention

Self Cross
ResNet

Attention

Self Cross



Dot Softmax

Dot

Text-to-Image Cross-Attention

photo
of

a
moon
gate

Text features only input to      

and



LDMs for Text-to-Image Synthesis

- 32x32 cont. space

- 600M Transformer

- 800M UNet

- 400M Image/Text Pairs

Slide credit: Robin Rombach 



LDMs for Text-to-Image Synthesis

convolutional sampling (train on 256², generate on >256²)

“A sunset over a mountain range, vector image”

“A sunset over a mountain range, oil on canvas”

Slide credit: Robin Rombach 
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“Cheat Code”: Classifier-Free Diffusion Guidance
Jonathan Ho, Tim Salimans

- see https://arxiv.org/abs/2207.12598

- works very well for conditional image generation:
Constant Embedding

Text Prompt

https://arxiv.org/abs/2207.12598


Stable Diffusion
Latent Diffusion ++



From Latent to Stable Diffusion

- goal: achieve a small model that people can actually run locally on “small” GPUs 

(~10GB VRAM)

- progressive training: pretrain on 256x256, then continue on 512x512

- fix text encoder (as in Imagen)

- → choose CLIP (ViT-L/14) since performance/size tradeoff seems significant 

Figure from Imagen, https://arxiv.org/abs/2205.11487

https://arxiv.org/abs/2205.11487


From Latent Diffusion to Stable Diffusion

Stage 1: Pretraining @256x256

- 237k steps at resolution 256x256 on LAION 2B(en)
- batch-size = 2048
- ~ 64 A100 GPUs

10k random COCO val captions / 50 decoding steps



From Latent Diffusion to Stable Diffusion
Stage 2: Training @512x512. batch-size=2048, #gpus=256

part 1 (v1.1):

- 194k steps at resolution 512x512 on laion-high-resolution (170M 
examples from LAION-5B with resolution >= 1024x1024).

part 2 (v1.2):

- 515k steps at resolution 512x512 on "laion-improved-aesthetics" 
(a subset of laion2B-en, filtered to images with an original size >= 
512x512, estimated aesthetics score > 5.0, and an estimated 
watermark probability < 0.5

part 3/4 (v1.3/v1.4):

- 195k/225k steps at resolution 512x512 on "laion-improved-
aesthetics" and 10% dropping of the text-conditioning

10k random COCO val captions / 50 decoding steps

→ 4.2 GB checkpoint (EMA only, fp32)

https://huggingface.co/datasets/laion/laion-high-resolution
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https://discord.gg/stablediffusionSlide credit: Robin Rombach 
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Stable Diffusion (img2img) + EBSynth by Scott Lightsier: 
https://twitter.com/LighthiserScott/status/1567355079228887041?t=kXXCAVtuO5lJCGcro3Ma3A&s=19

EBSynth: single-frame video stylization app: https://ebsynth.com/

Video Synthesis

https://twitter.com/LighthiserScott/status/1567355079228887041?t=kXXCAVtuO5lJCGcro3Ma3A&s=19


Prompt Search Engine (lexica.art)
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Slide credit: Robin Rombach 



Prompt Marketplace (promptbase.com)
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UIs / Plug-Ins for Photoshop, GIMP etc
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https://twitter.com/wbuchw/status/1563162131024920576

https://github.com/lkwq007/stablediffusion-infinity
Slide credit: Robin Rombach 

https://twitter.com/wbuchw/status/1563162131024920576
https://github.com/lkwq007/stablediffusion-infinity


What if you have 1,000+ GPUs/TPUs
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DALL·E 2, Imagen
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• Pixel-based Diffusion (No encoder-decoder)

• pre-trained text encoder (CLIP, t5)

• Diffusion model + classifier-free guidance 

• Cascaded models: 64->128->512
https://cdn.openai.com/papers/dall-e-2.pdf

https://arxiv.org/abs/2205.11487

https://cdn.openai.com/papers/dall-e-2.pdf
https://arxiv.org/abs/2205.11487


Diffusion vs. Autoregressive vs. GANs
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GigaGAN: Scaling up GANs
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[Kang et al., CVPR 2023]



GigaGAN Generator
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[Kang et al., CVPR 2023]



GigaGAN Discriminator
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[Kang et al., CVPR 2023]



Style Mixing
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[Kang et al., CVPR 2023]



Prompt Mixing
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[Kang et al., CVPR 2023]
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Comparison between Different Models

[Kang et al., CVPR 2023]
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StyleGAN-T

[Sauer et al., ArXiv 2023]

GigaGAN



How could we improve it?
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• Better generative modeling techniques:  VAEs, GANs, diffusion, AR, Hybrid

• Better text encoders: RNN/LSTM -> Transformers (CLIP, T5)

• Better generator architectures: RNN/LSTM -> CNN -> CNN + Transformer

• Better ways to connect text and image: concatenation -> AdaIN -> cross-attention

• More data + GPU/TPU computing: a few hundred A100. 

• Bigger model sizes: 1B-20B. 
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